• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • COE-HPC
  • Events
    • Data Science Webinars
    • BYOC Workshop
    • BYOD Workshop
    • AggiE_Challenge
    • Hitchhiker’s Guide to HPC
  • Resources
    • TAMIDS Data Science Trainee Program
    • Texas A&M Data Science Club
    • Special Topic Course on HPC
    • Special Topic Course on Data Science
    • HPRC at A&M
    • Crash Courses
  • News

COE HPC

Bring High Performance Computing to Everyone in College of Engineering at Texas A&M University!

Texas A&M University College of Engineering

TAMIDS / TEES / HPRC Online Workshop on Scientific Machine Learning (SciML)

Posted on October 22, 2020 by Jian Tao

October 27, 2020
8:30 am – 1:00 pm
Online via zoom

https://tamids.tamu.edu/2020/10/07/wkshp-sciml/

Scientific Background

Scientific Machine Learning (SciML) is a rapidly developing area that aims to revolutionize the practice of Science and Engineering, by bringing together the fields of Machine Learning and Scientific Computation. Typical data-driven Machine Learning methodologies do not incorporate physical understanding of the problem domain. Furthermore, in many scientific domains high-fidelity data are expensive or time-consuming to obtain. Physics-aware SciML addresses both of these problems by introducing regularizing constraints obtained from physical laws, allowing prediction of future performance of complex multiscale, multiphysics systems using sparse, low-fidelity, and heterogeneous data. Unlike traditional black-box Machine Learning methods, SciML aims to deliver interpretable models, leading to improved verification and validation in mission-critical applications.

Workshop Aims

This informal workshop is intended to help identify and bring together members of the academic community at Texas A&M who are interested in studying SciML. Areas of interest include: physics-informed deep neural networks, data-driven model discovery through large-scale simulation, ML-guided acceleration of numerical simulations; ML-guided automation of data acquisition and decision-support for complex systems; incorporating approaches such as: multifidelity surrogate modeling, uncertainty quantification, Bayesian inference; and computational frameworks, systems, and methods for SciML. While recent advances in SciML have been driven primarily by applications in Engineering, Physical Sciences and Synthetic Biology, the workshop encourages discussion of potential applications in other fields that may integrate domain knowledge and models with machine learning. Through the exchange of ideas and results we hope to foster coherent research efforts that can lead to new scientific advances and enhance competitiveness for external funding.

Workshop Organization

The workshop is open to all members of Texas A&M via zoom meeting ID 945 9928 7403 passcode 526915 (TAMU authentication required). No registration is required to attend. The workshop will comprise:

  1. Short invited talks from Texas A&M speakers with plenty of time for technical discussion.
  2. A round table discussion to identify challenges and opportunities for SciMl and devise strategies to strengthen Texas A&M’s ability to address them
  3. Contributed slide presentations that will appear on the workshop website but not be delivered as talks at the workshop event.

Currently confirmed speakers are listed below. The full program will be announced during the week prior to the workshop.

Contributed Slide Presentations

Members of Texas A&M who wish to contribute a short slide presentation to appear on the workshop website (up to 5 slides, pdf format) conformant to the scope of the workshop should send these by email to Ms. Jennifer South jsouth@tamu.edu with the subject line “SciML Workshop Contributed Presentation”, preferably by end October 20, 2020.

Organizing Committee

Ulisses Braga-Neto (ECE), Nick Duffield (TAMIDS / ECE), Jian Tao (TEES / TAMIDS / HPRC / ECE), with thanks to Narasimha Reddy (ECE / TEES) for fostering discussion on Scientific Machine Learning.

Sponsoring Organizations

The Texas A&M Institute of Data Science (TAMIDS), the Texas A&M Engineering Experiment Station (TEES), Texas A&M High Performance Research Computing (HPRC)

Confirmed Speakers

  • Raktim Bhattacharya, Aerospace Engineering, A Convex Optimization Framework for Generating Finite Difference Schemes for Arbitrary PDEs (Discovered or Derived)
  • Ulisses Braga-Neto, Electrical and Computer Engineering, Self-Adaptive Physically-Informed Neural Networks with Applications in Microstructure Informatics
  • Jiachen Ding, Atmospheric Sciences, Automatic Pixel-by-pixel Contrail Cloud Detections
  • Yalchin Efendiev, Mathematics, Multiscale Simulations and Machine Learning
  • Eduardo Gildin, Petroleum Engineering, Scientific Machine Learning for Fast Reservoir Simulation and Prediction
  • Xia (Ben) Hu, Computer Science & Engineering, AutoML Systems in Action
  • Lisa Perez, High Performance Research Computing, TBA
  • Narasimha Reddy, Electrical and Computer Engineering and TEES, Introduction
  • Lifan Wang, Physics and Astronomy, Artificial Intelligence Assisted Inversion of Supernova Explosion Models

Literature and Online Resources

  • Chris Rackauckus, The Essential Tools of Scientific Machine Learning (Scientific ML), Stochastic Lifestyle (Blog post), 2019
  • Baker, Nathan, Alexander, Frank, Bremer, Timo, Hagberg, Aric, Kevrekidis, Yannis, Najm, Habib, Parashar, Manish, Patra, Abani, Sethian, James, Wild, Stefan, Willcox, Karen, & Lee, Steven. Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence. https://www.osti.gov/servlets/purl/1478744
  • Innes, M., Edelman, A., Fischer, K., Rackauckus, C., Saba, E., Shah, V. B., & Tebbutt, W. (2019). Zygote: A differentiable programming system to bridge machine learning and scientific computing. https://arxiv.org/abs/1907.07587
  • Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707. https://doi.org/10.1016/j.jcp.2018.10.045
  • Tijana Radivojević, Zak Costello, Kenneth Workman, Hector Garcia Martin, A machine learning Automated Recommendation Tool for synthetic biology, Nature Communications, Vol, 11, Article number: 4879 (2020), https://doi.org/10.1038/s41467-020-18008-4
  • Jie Zhang, et. al., Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism, Nature Communications, Vol. 11, Article number: 4880 (2020), https://doi.org/10.1038/s41467-020-17910-1

Contact Information

Ms. Jennifer South, TAMIDS, jsouth@tamu.edu

 

Filed Under: Uncategorized

Updates

  • Dr. Jian Tao joined the Department of Visualization September 7, 2021
  • Parallel Computing with MATLAB Hands-On Workshop February 25, 2021
  • TAMIDS Scientific Machine Learning Lab February 1, 2021
  • TAMU Master of Science in Data Science February 1, 2021
  • HPRC/TAMIDS Workshop: Data Visualization and Geospatial Analysis With R November 3, 2020

© 2016–2023 College of Engineering HPC Team

Texas A&M Engineering Experiment Station Logo